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ABSTRACT 
 

In this article optimal design of shear walls is performed under seismic loading. For practical 
aims, a database of special shear walls is created. Special shear walls are used for seismic 
design optimization employing the charged system search algorithm as an optimizer. 
Constraints consist of design and performance limitations. Nonlinear behavior of the shear 
wall is taken into account and performance based seismic design optimization is 
accomplished. Capacity curves of the optimal solution are determined and compared 
incorporates soil–structure interaction. Also an optimization based method is proposed for 
bilinear approximation of capacity curve. These are a new methodology for seismic RC 
shear wall optimum design. 
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1. INTRODUCTION  
 

Optimization in design of structures is usually implemented to nomination the variables so 
as to attain an optimum structural weight or cost, whereas the design criteria are satisfied. In 
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contrast to steel structures, optimizing RC structures is more complex. The main reason for 
this problem is semi-infinite set of member sizes and various templates of reinforcement [1]. 
In concrete structures, at least three different cost items should be considered in the 
optimization process consisting of costs of concrete, steel, and the formwork [2]. 

Walls that primarily resist lateral loads due to the wind or earthquakes acting on the 
building are called shear walls or structural walls. These walls often provide lateral bracings 
for the rest of the structure. They withstand gravity loads transferred to the wall by the 
components of the structure tributary to the wall, in addition to lateral-loads (lateral shear 
forces) and moments about the strong axis of the wall [3]. Design codes emphasis that in the 
regions with medium or high seismic risk level, special reinforcement is required in order to 
have favorable performance of concrete structures against earthquake hazards [4]. Regions 
comprising of concentrated and tied reinforcement are known as boundary elements, 
irrespective of whether or not they are thicker than the rest of the wall. 

There are some publications on seismic design of shear walls. Wallace [5, 6] proposed 
new code format for seismic design of RC structural walls, Sasani [7] proposed a 
performance design methodology relative to concrete structural walls. The performance 
level targeted in the design was life safety. Kowalsky [8] presented RC structural walls 
designed according to UBC and displacement-based methods. 

Many researchers have addressed the optimum design of seismic structures, but a few 
works exist on optimal design of shear walls incorporating new seismic codes' 
considerations. Saka [9] offered Optimum design of multistory structures with shear walls, 
Ganzerli et al. [10] presented a performance-based design using structural optimization. The 
optimum design of active seismic structures was studied by Cheng and Pantelides [11]. 
Fragiadakis et al. [12] carried out performance-based optimum seismic design of structural 
reinforced concrete structures. 

The three performance levels are defined as follows: 
(i) Collapse Prevention level (CP): the building is not collapsed only; any other damage 

or loss is admissible; (ii) life Safety level (LS): the structure remains stable and has 
meaningful capacity save; hazardous nonstructural damage is controlled; and (iii) Immediate 
Occupancy level (IO): the building is safe to inhabit, any repairs are minor. 

In structural earthquake engineering considering Soil-Structure Interaction (SSI) is often 
a vital phase of analysis and design of the structures. For example when designing slender 
structures such as tall buildings or bridge piers, it is necessary to incorporate the features of 
the soil [13]. Some of the first studies on soil–structure interaction that used the analytical 
and experimental results from elastic half-space theory were performed by Hall [14], 
Parmelee [15] and Parmelee et al. [16]. Although the main limitation was the dependency of 
the impedance on the exciting frequency, these became the first attempts to establish a link 
between the elastic half space theory and the mass-spring-dashpot system [17]. Ghersi et al. 
[18] investigated the non-linear moment–rotation relationship at the base of the shear walls. 
Raychowdhury [19] carried out seismic response of low-rise steel moment-resisting frame 
buildings incorporating nonlinear soil-structure interaction. 

In this article optimal design of shear walls is performed under seismic loading. For 
practical aims a database of special shear walls is created. Special shear walls are used for 
seismic design optimization and charged system search algorithm is employed for this 
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purpose. Constraints consist of design and performance criteria. Nonlinear behavior of the 
shear wall is taken into account and a performance based seismic design optimization is 
accomplished. Capacity curves of the optimum solution incorporating soil–structure 
interaction are determined and compared. For considering the inertial effects only, FEMA-
356 [20] recommends to estimate:  Initial stiffness and ultimate load capacity, here the first 
method of FEMA is used. Also a simple optimization formulation is proposed for bilinear 
approximation of capacity curve. This is a new methodology for seismic RC shear wall 
optimal design. The results show the usefulness of this practical optimization approach. 

 
 

2. CONSTRUCTION OF DATABASE FOR SHEAR WALLS 
 

In some recent investigations, for practical optimization of RC frames, discrete database of 
column and beam are constructed [1, 21]. Here, a database of special shear walls (a shear 
wall containing boundary elements) is created. Limitations are considered as: 

 
The lw=hw+2*tf  is the length of shear wall which is equal to 6.7 m. 
200 < tw < 400 mm is assumed as  the limitation for thickness. 
600 < tf <1200 mm is assumed as the limitation for length of the flange. 
200 < bf <1200 mm is assumed as the limitation for width of the flange. 
300 < Ssh < 450 mm based on ACI 318-08[22] code is the distance of the vertical and 

horizontal shear bars which are considered identical in order to reduce the discrete section 
numbers. Diameter of these bars is taken as 16 mm. 

be  is the diameter of each bar of the flange (boundary element)  that is selected as 32 or 

36 mm. 
Intervals of the dimensions is considered as 100 mm, and intervals of the Ssh is 

considered as 50 mm. 
Asf min=0.01*tf*bf is the minimum reinforcement area of one flange. 
Asf max=0.04*tf*bf  is the maximum reinforcement area of one flange. 
 
These formulations are proposed for boundary element reinforcement arrangement: 
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Figure 1. Reinforcement notations of the boundary element 

 
nud and nlr are the number of bars defined in Figure 1. sa  is the area of selected 

reinforcement bars of the boundary elements. bd  is the flexural reinforcing bar diameter; td  

is the diameter of tie bar; cs  is spacing between longitudinal bars in the boundary element; 

ct  is the cover thickness; Int(x) rounds to integer part of the x. 

Note that each value which is selected for nlr and nud must be an even number, and if 
any one is an odd number, then it must be round to the nearest even number in its allowable 
domain. 
 

 
Figure 2. Topology of a special shear wall section 
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Figure 2 shows the topology and notations of the considered special shear wall cross-
section. The created shear wall section database is provided in Table 1 containing 7568 wall 
sections being genertaed for discrete optimization. 

 
Table 1. Section data base of the special shear wall 

No. tw tf bf Ssh be  Nrl Nud 

1 200 600 400 500 32 4 6 

2 200 600 400 350 32 4 6 

3 200 600 400 400 32 4 6 

4 200 600 400 450 32 4 6 

---- ---- ---- ---- ---- ---- ---- ---- 

3290 300 700 1100 300 36 14 8 

3291 300 700 1100 300 36 16 10 

3292 300 700 1100 300 36 18 10 

3293 300 700 1100 300 32 6 4 

---- ---- ---- ---- ---- ---- ---- ---- 

7565 400 1200 1200 400 36 20 20 

7566 400 1200 1200 400 36 22 22 

7567 400 1200 1200 400 36 24 24 

7568 400 1200 1200 400 36 26 26 

 
 

3. FORMULATION OF SPECIAL SHEAR WALL SEISMIC DESIGN 
OPTIMIZATION 

 
Cost of the shear wall includes the cost of concrete, steel bars and formwork. Cost of the 
special transversal reinforcement at the base of the shear wall, is neglected because of small 
effect on the total cost function. 

Optimization constraints consist of design constraints and performance constraint, i.e. 
plastic rotation limitation. An optimization problem in general form can be defined as:  
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Database sections are sorted by their cost per unit height of the wall, and X is the solution 

vector containing the cost per unit height of wall, and ng is the number of design variable or 
the number of member groups. Rd is the design domain of the variables. 

 
 to minimize     fit(X) = f(X)×f penalty(X) (3) 

 
Where fit(X) is the fitness function, f(X) is the objective function which is the cost of the 
shear wall, fpenalty(X) is penalty function utilized for constraint handling: 

 
 f =  concrete cost + steel cost +formwork cost (4) 

 
 Concrete cost = Cc*( 2*bf*tf*Hw + hw*tw*Hw -2*m1*Asf - m2*Asw  ) (5a) 
 
 Steel cost = γst*Cst*((2*m1*Asf+m2*Asw)*Hw+2*lw*Int(Hw/Ssh)*Asw) (5b) 
 
 Formwork cost = Cf*( 4*(bf + tf -0.5*tw)*Hw + 2*hw*Hw ) (5c) 

 
Hw is the total height of the wall; Asf is cross-section area of each bar in the flange of the 

wall; Asw is the cross-section area of each bar in the web of the wall, for longitudinal and 
transversal shear reinforcement considered as one cross-section area; hw is the length of the 
shear wall's cross-section web; m1 is the number of reinforcement bars in each flange; m2 is 
the number of reinforcement bars in the web. 

Constant values: 3/$60 mCc   is the unit cost of the concrete; kgCs /$9.0  is the 

unit cost of the steel; 2/$18 mC f    is the unit cost of the formwork;   3/7850 mkgs   

is the density of the steel; 
Penalty approach is used for constraint handling.  
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In this paper, the parameters 1  and 2  for the penalty function, are chosen as 1 and 2, 

respectively.   is the sum of the disapproval constraints. 
Optimization constraints are defined as follows: 
Plastic rotation limitation is considered as a performance constraint and imposed on the 
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first level (story) of the shear wall including four checkpoint sections, because initial plastic 
hinges are formed at places near the base of the wall. In order to calculate the plastic 
rotations, after each nonlinear static (pushover) analysis, the moment-curvature data of the 
checkpoints are obtained and ultimate curvature u  is specified for each checkpoint, then 

this equation can be utilized: 
 pyup L)(    (7) 

 

p  is the plastic rotation, y  is the yield curvature which is defined as Ref. [8]: 
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pL  is the assumed plastic hinge length: 
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Based on FEMA criteria [20] allowable plastic rotation allp  of shear walls that are 

controlled by flexure for the IO, LS and CP performance levels are 0.005, 0.010 and 0.015, 
respectively. In this study IO level is utilized for optimization procedure, and thus it is equal 
to 005.0allp . 

Plastic rotation constraint is shown in Eq. (9): 
 

 01
θ

θ
g

allp

p
1   (9) 

 
For seismic design of special shear wall [3, 4] some important design constraint must be 

used. c is compression region length of the wall section. The ACI 318-08 [22] express these 
restrictions for design as: 
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u is the design displacement. In this paper for risk category of IV it is equal to 0.0045Hw 

based on the ASCE 7-10 [23]. Wallace [5] has provided the following relationship for the 
calculation of c as: 
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Eq. (10b) can be used for the maximum compressive strain of 

wc lcand 5.0005.0max   more detail about these parameters can be found in Ref. [5]. 

Minimum length of each flange is: 
 

 }2/,1.0max{min clct wf   (10c) 

 
The second constraint is is a limitation for the flange length: 
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Ultimate shear strength of the wall is defined as: 
 

 wwcvcvcvnvu ltAAfVV  
3

2
maxmax  (12) 

 
Shear force of the wall uV  must be controlled by the nominal shear strength maxnV .This 

restriction can be expressed as: 
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Here, the shear force demand of the wall, uV , is selected greater than cvc Af 
6

1
. 

Therefore, according to the ACI at least in double layer shear reinforcement in both 
orthogonal directions of wall must be used. Special reinforcement of wall is determined in 
the following form: 
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ta  is the required transversal shear reinforcement ratio of the wall obtained from Eq. (14). 

Here, uV  is greater than cvc Af 
12

1
, thus 0025.0min,min,  lt  . min,l  is the minimum 

longitudinal shear reinforcement ratio. 
After determining of at from Eq. (14), based on  the existence reinforcement ratio t :  

The transversal shear reinforcement ratio constraint is: 
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Considering the combination of axial force uP  and bending moment uM  demands is 

necessary in the design of wall. Due to tall height of the wall and neglecting the longitudinal 
(vertical) shear reinforcement, with good approximation we can convert the moment to a 
couple of compressive force uC   and tension force uT [3, 4]. Hence, we can design flanges 

such as a column by these force demands: 

z

M
T u
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auT , uaC  are allowable tension and compressive forces, respectively; z is the distance 

between the center of two flanges. 
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ctv and  ,  are the strength reduction factors being equal to 0.75, 0.90 and 0.65 according 

to the ACI, respectively; cf   is the compressive strength of concrete and yf  is the yield 

stress of steel; 
Tension and compressive strength constraints are as follows: 
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All together we have six constraints for shear wall design optimization. 
 
 

3. PERFORMANCE BASED CONCEPTS FOR DESIGN 
 

Convex model approach [24] is employed for considering seismic excitation and period 
uncertainties of the shear wall. Using the convex model is not essential, and if the period of 
the structure is assumed, then designer can use the maximum valid earthquake response 
spectra directly. The structural response to an uncertain earthquake can be appraised in the 
convex domain. The convex model theory can determine the maximum response of the 
structure, without determining the response of every point in the convex zone. The convex 
model theory establishes that the maximum response in a convex zone can be found on the 
convex hull (the closed external perimeter) of the convex set. This model is proposed by 
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Ganzerli et al. [10] for a portal frame. The convex region is shown by the closed area 
between the dashed lines and design spectrums, Figure 3. 

Middle period for these shear walls in the database is 0.65 sec for initial design. To find 
the boundaries of the convex model, it is supposed that the shear wall has a deviation from 
the nominal stiffness equal to 50 percent, and a deviation from the nominal mass of 10 per 
cent. These deviations are estimated by using the data of existing shear walls. For simplicity 
the upper bound and lower bound values of the period can be calculated by the period of a 
single degree of freedom system. This period is obtained from Eq. (19): 

 

 
K

m
T 2  (19) 

 

 

Figure 3. Design spectra and convex region 
 
For the above referenced range of variations from the nominal values of the mass m and 

the structural stiffness K of the considered shear walls, the period varies between 0.50 and 
0.96 sec. The specific geographical area is chosen as Ref [10], and the acceleration 
parameters obtained from the maps provided with the following guidelines are as follows: 
For the BSE-1, Ss =0.6 g, and S1 =0.2 g. For the BSE-2, Ss =1.50 g, and S1 =0.6 g. Here, BSE 
is the abbreviation for Basic Safty Earthquake (for further description see Ref. [20]). The 
acceleration parameters must be modified to account for the site class effects and are used to 
construct the design spectrum. The adjustment for site class can be obtained by using the 
following expressions: 

 
 saXS SFS   (20a) 
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 11 SFS vX   (20b) 

 
A general horizontal response spectrum as shown in Figure 3 should be developed using 

the following equations: 
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More details on the above equations can be found in Ref [20]. 
The provisions [20] give a relationship for estimating the target displacement t  using 

the following expression: 
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0C  is a modification factor to relate the spectral displacement of an equivalent SDOF 

system to the roof displacement of the MDOF system. Here 0C  is equal to 1.3. 1C  is a 

modification factor to relate the expected maximum inelastic displacements to the calculated 
linear elastic response displacements; 1C  is equal to 1.0 for this structure. 2C  is the 

modification factor to represent the effect of pinched hysteretic shape, stiffness degradation 
and strength deterioration on maximum displacement response for IO level and for this 
structure it is considered as 1.0. 3C  is the modification factor to represent the increased 

displacements due to dynamic P effects. For buildings with positive post-yield stiffness, 
this is equal to 1.0. aS  is the response spectrum acceleration, at the effective fundamental 

period and damping ratio of the building in the direction under consideration, and g  is the 

acceleration of gravity. Target displacement for the BSE-2 earthquake ( aS =1.5 g) is 

calculated as 205 mm. Hence, the upper bound condition is used for the shear wall nonlinear 
static analysis. 

 
 

4. CHARGED SYSTEM SEARCH 
 

4.1. Definition of charged system search 

Charged system search was proposed by Kaveh and Talatahari [25]. This algorithm is based 
on Gauss and Coulomb laws from electrostatics and the Newtonian laws of classic 
mechanics. The CSS is a population based algorithm, where each agent is called a charged 
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particle (CP) that is supposed to be a sphere with radius of a which has uniform charge 
distribution. Each CP is under the influence of other particle's force field. The value of the 
resultant force is specified by using the electrostatics laws and the quality of the movement 
is determined using the Newtonian mechanics laws. A good CP induces more force than the 
bad ones. The main steps in this algorithm are as follows: 

Step 1: Initialization. The initial positions or arrays of CPs are specified randomly in the 
search domain and the initial velocities of the CPs are supposed to be zero. The values of the 
objective function for the CPs are specified and the CPs are sorted in an increasing order. 
The best CP among the whole set of CPs will be recorded as Xbest and its related objective 
function value is shown by fitbest. Similarly, the worst CP is recorded as fitworst. A number 
of the first CPs and their related values of the objective function are stored in a memory, 
known as the charged memory (CM). 
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N is the number of variables, CMS is the charged memory size that is usually equal to the 

integer part of the (Number of CPs)/4. max,ix  and min,ix  are upper bound and lower bound of 

variable values i, respectively. rand is a random number with uniform distribution in the 
range of [0,1]. 

 
Step 2: Forces calculation. Determine the force vector for each CP as 
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Where Fj is the resultant force acting on the jth CP; N is the number of CPs. The value of 
charge for each CP, qi, is defined considering the feature of its solution as 
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Where fitbest and fitworst are the best and the worst fitness of all the particles, respectively; 
fit(i) illustrates the fitness of the agent i. The distance rij between two charged particles is 
defined as follows: 
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Where Xi and Xj are the positions of the ith and jth CPs, respectively, Xbest is the position of 
the best current CP, and ε is a small positive value to avoide singularities. Here, pij is the 
probability criteria of moving each CP towards the others and is attained using the function 
as follows: 
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A suitable value for a is expressed considering the size of the search domain as 
 

   ngixxca ii ,...,2,1max min,max,0   (28) 

0c  is a constant coefficient. In this paper a value near to 0.01 leads to a good solution. 

Step 3: Moving of particles. Each CP moves to its new position and this new position is a 
function of old position and old velocity, new position and new velocity are calculated as 

 
 )( ,,21, oldjoldjvjjajnewj XVkrandFkrandFixX   (29) 

 
 

oldjnewjnewj XXV ,,,   (30) 

 
Where ka is the acceleration coefficient; kv is the velocity coefficient; and randj1 and randj2 
are two random numbers uniformly distributed in the range of (0,1); Fix(X) is a function 
which rounds each elements of X to the nearest permissible discrete value existing in the 
database [26]. kv controls the exploration process so it must be decreased for convergence, ka 
controls exploitation process that is a parameter related to attractive force. Small values of 
this parameter lead to divergence or increasing of the computational time. kv and ka are  
linearly varying increasing  and decreasing functions, respectively [25, 27]. 

Step 4: Updating procedure. If a new CP exits from the allowable search domain, a 
harmony search-based handling approach can be utilized to adjust its position [25]. 
According to this mechanism, any element of the solution vector violating the variable 
boundaries can be reproduced from the CM or from randomly selecting one value from the 
allowable range of values. Furthermore, if some new CP vectors are better than the worst 
ones in the CM, they are substituted with the worst ones in the CM. 

Step 5: Terminating criterion check. Steps 2–4 should be repeated up to a terminating 
criterion is satisfied. 

 
4.2. Main rules of the charged system search 
In this part some rules corresponding to the CSS are introduced. The rules are as follows [27]: 

Rule 1: The CSS is a population-based algorithm. In each iteration, a predetermined number 
of agents are used to seek the search domain and the value of the charge for each agent or CP, 
and the distance between two charged particles is expressed by Eqs. (25) and (26).  

Rule 2: The initial positions of the CPs are determined randomly by Eq. (22) in the 
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search space and the initial velocities of the charged particles are assumed to be zero.  
Rule 3: Electric forces between any two CPs are supposed to be attractive force. 
Rule 4: All good CPs can attract the bad CPs and only some of the bad particles can 

attract good particles, considering the probability criteria (Eq. (27)).  
Rule 5: The value of the resultant electrical force affecting a CP is calculated using Eq. (24).  
Rule 6: The new position and the new velocity of each CP are specified by Eqs. (29) and (30).  
Rule 7: The CSS uses a memory (CM) which stores the best CP solution vectors and their 

corresponding objective function values.  
Rule 8: The particles violating the boundaries of the variables are reproduced using the 

harmony search-based handling approach.  
Rule 9: Terminating criterion 
Here, a limited number of iteration is selected as a terminating criterion for fulfilling the 

process. 
 
 

5. NUMERICAL EXAMPLE 
 

In this section, the CSS algorithm is used for discrete optimization problem of special shear 
wall. Because of practical aims and constraint reduction of the problem, a shear wall section 
database is constructed. Six constrains are imposed to the problem containing five seismic 
design constraint and one performance constraint. Plastic rotation constraint often is not 
violated in the optimization process for three reasons as: The first is the implementation of 
five effective constraint. The second is because of using ACI code special criteria for 
creating database. The third is that the target displacement is based on the middle values of 
the convex region so it is maybe small for shear walls with strong sections. 

 
Table 2. Definition of material properties in OpenSees 

Concrete 
Material type '

cf  0c  '
cuf  0c  

Core concrete (confined) 
Uniaxial Material Concrete 01   

25 
MPa 

 
0.002 

0.0 
MPa 

 
0.0035 

Cover concrete (unconfined) 
Uniaxial Material Concrete01   

25 
MPa 

 
0.0024 

5.0 
MPa 

 
0.006 

Steel 
Material type '

cf  0E  b  

Reinforcing steel 
Uniaxial Material Steel01   

400 
MPa 

200000 
MPa 

 
0.02 

 
Height of the shear wall is 42 m and its length is 6.7 m, height of each story is 3.5 m. 

Loading details and topology of 12 story shear wall are provided in Figure 4. MATLAB [28] 
and OpenSees [29] softwares are utilized for optimization and analysis procedure, 
respectively. For analysis phase in OpenSees, twelve  nonlinear beam-column elements with 
distributed plasticity are applied for shear wall modeling, each element is divided by four 
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sections (integration points) and deformations of each section in the first story of the shear 
wall are recorded. Then plastic rotations are calculated using Eq. (7). Nonlinear concrete and 
steel material properties are provided in Table 2. As it is mentioned in this table the effects 
of confinement and unconfined parts of the wall fiber section are imposed in concrete 
properties definition. More information about the definition of materials can be found in 
Ref. [30]. 

 

Figure 4. A special shear wall loading 
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Also, the  P-Delta effects are included as a geometric transformation.Thus  both material 
and geometry nonlinearity are considered.Mu ,Vu ,Pu are demand moment and forces at base 
of structure that are clarified by the loading forces.Optimum solution is provided in Table 3. 

 

 

Figure 5. Convergence history of the CSS algorithm 
 

Table 3. Optimum section properties and cost of the special shear wall 

Cost ($) tw (m) tf (m) bf (m) Ssh (m) be  Nrl Nud 

41831 0.30 1.20 0.80 0.45 32 16 24 

 
Progress curve of the CSS is shown in Figure 5. Pushover curve of the optimum solution 

and plastic hinge formation sequence are plotted in Figure 6. First plastic hinge is formed in 
the first checkpoint section of the shear wall, which is in the first story and have a position 
with lowest height. The second and third plastic hinges are formed in the second and third 
section of the first story. Checkpoint sections (i.e. integration points of each element) for the 
first level are only recorded so as to calculate the plastic hinge rotations and are numbered 
from lower height. In Figure 7 plastic rotation limitations for three performance levels of 
optimum shear wall are shown on the capacity curve. Allowable plastic rotation for shear 
walls which are controlled  by the flexure as to Immediate Occupancy level (IO), Life Safety 
level (LS) and Collapse Prevention (CP), are defined as 0.005, 0.010 and 0.015, 
respectively. 
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Figure 6. The capacity curve of the optimum solution: plastic hinge formation sequence 
 

 

Figure 7. The performance levels for the optimum solution 
 
 
6. INCORPORATING SOIL-STRUCTURE INTERACTION IN OPTIMUM 

SOLUTION 
 

Seismic rehabilitation standards [20] for buildings located in moderate and high seismic risk 
zones require consideration of the interaction between the structure and the supporting soil. 
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FEMA for the seismic rehabilitation of structures allows modeling the foundation by means 
of a set of uncoupled elasto -plastic springs at the base of the columns and walls. 

Considering inertial effects of the soil-structure interaction is accomplished by first 
method of the FEMA-356. For shallow bearing footings that are rigid with respect to the 
supporting soil, an uncoupled spring model, as shown in Figure 8, will represent the 
foundation stiffness. 

 

Figure 8. Uncoupled spring model 
 
Properties of the soil under foundation are provided in Table 4. Notations of foundation 

are specified in Figure 9. Foundation dimensions and stiffness of the springs are in Table 5. 
These stiffness values are calculated according to the FEMA-356 relationships.  

Assessment of the soil-structure effects on optimum solution is under consideration. 
Elastic soil and elasto-plastic model are considered and compared to the fixed based mode. 
Comparison of the capacity curves are shown in Figure10. This plot also shows that the SSI 
incorporation reduces the base shear force capacity of shear wall and this reduction is more 
significant for the elasto-plastic soil model. Obviously, considering the SSI leads to an 
increase in the fundamental period. Fundamental period in the fixed base condition for 
optimum shear wall is 0.52 sec and it is equal to 0.88 sec after considering the SSI. 

 
Table 4. Soil properties 

C  (KN/m2)       (kN/m) sV   (m/s) 

0 35 0.35 18 335 
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Figure 9. General notations of the foundation 
 

Table 5. Foundation properties 

L (m) B (m) D (m) d (m) 
Kemb x 

(kN/m) 
Kemb y 

(kN/m) 
Kemb r  

(kN.m) 

7.8 3 1.5 0.8 1.4474 e6 1.4138 e6 1.8787 e7 

 

 

Figure 10. Comparison of the capacity curves in three conditions 
 
 

7. BILINEAR APPROXIMATION OF THE CAPACITY CURVE: AN 
OPTIMIZATION PROBLEM 

 
In this section, a simple optimization based method is proposed for bilinear approximation 
of the capacity curve, Figure 11. 
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According to FEMA provisions [20], the nonlinear force-displacement relationship 
between base shear and displacement of the control node will be replaced by an idealized 
relationship. In order to accomplish this idealization: firstly, the area below the original 
curve S1 must be equal to the area below OB and BC lines S2. Secondly, line of the OB must 
collide with the original curve in force value of 0.6Vy , i.e. an intersection point like A. 

The main steps of the optimization problem are as follows: 
 

i) Optimization variables are Vy and y . These are variables' limitations: 

 
 tyfy andVV   00  (31) 

 

fV  is the failure force of structure. 

 
ii) Consider 12)( SSxH   as an objective function that must be minimized. Absolute 

minimum value of this objective function is equal to zero but a small value near to zero 
is an admissible solution. Note that 1S  is constant and 2S  is calculated by variables in 

each iteration. Calculation is based on original curve data and its accuracy relies on the 
step intervals of the pushover analysis. 

iii) Interpolate  
yV6.0  corresponding to 0.6Vy of the original curve.  

iv) Calculate the linear equation of OB from optimization variables in each iteration: 

 OB:  


)
  

(
y

yV
V   (32) 

 
v) Construct the constraint of the problem with the value of V  corresponding to 

Interpolated 
yV6.0  which is determined using Eq. (32). 

   constraint = 01
  0.6


yV

V
 (33) 

 

0 (e.g. 0 =0.01) is the tolerance value for changing an equality constraint to an inequality 

constraint. 
 
vi) Using an optimization algorithm such as CSS for solving problem. The problem 

is terminated when the objective function has a value near to zero. 
 
Now, the effective stiffness eK  and eK  can be determined as the slope of the OB and 

the slope of BC, respectively [20]. 
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Figure 11. Force-displacement curve and its bilinear approximation 
 
The yV  and y  of three conditions are obtained by the optimization process, as shown in 

Table 6.  
 

Table 6. Bilinear approximation parameters obtained from optimization based method 

Condition 
y (mm) yV (kN) 

Fixed base 279 3272 

SSI with Elastic soil 455 3096 

SSI with Elasto-plastic soil 280 2124 

 
As we see from Table 6, the SSI effects on yV  and y  values are significant. In elastic 

soil, y  is greater than the fixed base mode. In elasto-plastic soil this is not much different, 

but yV  is more different from fixed base form in comparison with elastic soil model. Since 

in the elasto-plastic soil we have plastic moment and force limitations, thus in this plastic 
moment and forces large deformations occur. Hence, energy dissipation exists and the area 
under the capacity curve of the elasto-plastic model is smaller than the elastic model. This 
ductility causes the plastic hinges not to be formed in some checkpoints until target 
displacement of 800 mm. 

 
 

8. CONCLUDING REMARKS 
 

Considering seismic design criteria in structural optimization leads to more efficient 
structural design optimization, because in seismic design more provisions must be 
considered to have a safe structure against earthquake. Shear walls are one of the important 
structural elements that provide lateral bracing for the rest of the structure. In regions with 
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medium or high seismic risk level, special reinforcement is required in order to have 
favorable performance of concrete structures against earthquake hazards. Here, special shear 
wall optimization using the CSS algorithm is presented. A database of shear wall sections is 
proposed so as to have a practical optimization. Plastic rotation constraint is imposed as a 
performance constraint. These plastic rotations are obtained from nonlinear static analysis 
including material and geometry nonlinearity and target displacement is calculated based on 
the aforementioned convex model of design spectra of the FEMA. After optimization 
process, optimum shear wall capacity curve and plastic hinge formation are presented. Then 
the SSI effects are verified and capacity curves are obtained. After that the bilinear 
approximation of capacity curves as an optimization problem is proposed and specifications 
of each condition are compared. These methodologies propose a new aspect of special shear 
wall performance based seismic design optimization and assessment. 
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